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A B S T R A C T   

Since 2010, the Soil Moisture and Ocean Salinity (SMOS) satellite mission monitors the earth emission at L-Band. 
It provides the longest time series of Sea Surface Salinity (SSS) from space over the global ocean. However, the 
SSS retrieval at high latitudes is a challenge because of the low sensitivity L-Band radiometric measurements to 
SSS in cold waters and to the contamination of SMOS measurements by the vicinity of continents, of sea ice and 
of Radio Frequency Interferences. In this paper, we assess the quality of weekly SSS fields derived from swath- 
ordered instantaneous SMOS SSS (so called Level 2) distributed by the European Space Agency. These products 
are filtered according to new criteria. We use the pseudo-dielectric constant retrieved from SMOS brightness 
temperatures to filter SSS pixels polluted by sea ice. We identify that the dielectric constant model and the sea 
surface temperature auxiliary parameter used as prior information in the SMOS SSS retrieval induce significant 
systematic errors at low temperatures. We propose a novel empirical correction to mitigate those sources of 
errors at high latitudes. 

Comparisons with in-situ measurements ranging from 1 to 11 m depths spotlight huge vertical stratification in 
fresh regions. This emphasizes the need to consider in-situ salinity as close as possible to the sea surface when 
validating L-band radiometric SSS which are representative of the first top centimeter. 

SSS Standard deviation of differences (STDD) between weekly SMOS SSS and in-situ near surface salinity 
significantly decrease after applying the SSS correction, from 1.46 pss to 1.28 pss. The correlation between new 
SMOS SSS and in-situ near surface salinity reaches 0.94. SMOS estimates better capture SSS variability in the 
Arctic Ocean in comparison to TOPAZ reanalysis (STDD between TOPAZ and in-situ SSS = 1.86 pss), particu
larly in river plumes with very large SSS spatial gradients.   

1. Introduction 

In the context of global warming, Arctic is experiencing an increase 
of temperature two to three times higher than the global mean average 
(IPCC, 2018). The freshwater cycle in that region is profoundly mod
ified. The salinity is decreasing (see a review in Carmack et al., 2016) 
except in the Barents Sea where both temperature and salinity are in
creasing under the effect of ‘Atlantification’, i.e. increase of salty supply 
from North Atlantic waters (Lind et al., 2018). Eventually, in the Arctic 
Ocean, salinity is the key dynamical variable, ensuring the stability of 
the water column and controlling the ocean circulation (Carmack, 
2007). 

The high variability of freshwater inputs is a dominant feature of the 

Arctic Ocean and induces a large variability in salinity (Carmack et al., 
2016; Haine et al., 2015). In addition to the seasonal freshwater input 
from ice melting, the Arctic Ocean sea surface salinity (SSS) is mainly 
controlled by numerous river inputs. The Arctic Ocean covers only 
1.2% of the global ocean but collects 11% of the freshwater from global 
river plumes (Shiklomanov et al., 1998) mainly in the interior shelves 
of the Kara, Laptev and East-Siberian Seas. In addition, the surface 
water entering poleward through Bering Strait is rather fresh in com
parison with salty waters from Atlantic. The third major net source of 
freshwater in the Arctic Ocean comes from air-sea exchange (pre
cipitation minus evaporation). Freshwater is exported equatorward 
from the Arctic Ocean at Fram Strait, over the east Greenland shelves, 
as well as through Davis Strait after crossing Baffin Bay. 
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Since 2010, L-Band radiometer satellite missions (SMOS (2010- 
present), Kerr et al., 2010, Font et al., 2010), Aquarius (2011–2015,  
Lagerloef et al., 2008) and SMAP (2015-present, Piepmeier et al., 2017) 
have demonstrated their abilities to monitor salinity variability at 
various temporal and spatial scales in synergy with in-situ measure
ments as reviewed by Vinogradova et al. (2019) and Reul et al. (2020). 
L-Band radiometry is of particular interest in the Arctic Ocean as it 
combines the ability to retrieve thin sea ice thickness and salinity. 
SMOS is the first satellite mission carrying an L-band radiometer (the 
MIRAS interferometer) allowing to retrieve SSS with an unprecedented 
temporal coverage. It follows a sun-synchronous circular orbit. 

L-Band radiometer measurements are significantly less sensitive to 
SSS in cold water than in warm tropical conditions (Meissner et al., 
2016). However, a very large range of SSS is observed in the Arctic, 
with salinity close to 0pss in river plumes and reaching 35 pss in the 
Atlantic water (Carmack et al., 2015). For this reason, L-Band radio
metry remains valuable for the detection of large SSS variability and the 
monitoring of oceanic fronts in the Arctic Ocean (Brucker et al., 2014;  
Matsuoka et al., 2016; Olmedo et al., 2018; Tang et al., 2018; Tarasenko 
et al., 2019). 

Brucker et al. (2014) and Tang et al. (2018) presented capabilities 
(monitoring of the river plumes and of upper layer freshwater ex
changes between different Arctic Seas and sub-Arctic Oceans) and limits 
(sea-ice presence) of L-Band SSS retrievals based on Aquarius and SMAP 
measurements respectively. Köhler et al. (2015) found sea surface 
temperature (SST) - related bias (−1.2 pss) of SMOS SSS retrieved in 
cold waters and pollution due to Radio Frequency Interference (RFI) in 
the northern North Atlantic. Matsuoka et al. (2016) used SMOS SSS 
monitoring together with ocean colour remote sensing in order to de
tect the origin (river or ice melting) of salinity interannual anomalies 
close to the Mackenzie river mouth. Tarasenko et al. (2019) showed the 
atmospheric influence on the river plume variability in the Laptev Sea 
at intra-seasonal time scale (a few weeks) based on SMOS SSS. Recently, 
an SSS retrieval methodology alternative to the one in place in the ESA 
L2 chain has been proposed with new systematic bias corrections and 
filtering adjusted to the Arctic Ocean conditions (Olmedo et al., 2018). 

Using an accurate SST is critical in order to retrieve SSS with a 
minimum uncertainty. For instance, at SST = 5 °C and SSS = 35 pss, an 
error of 1 °C roughly leads to an error of 0.1 K in brightness temperature 
(TB), which translates into in error of 0.3 pss in the retrieved SSS (Yueh 
et al., 2001). According to Stroh et al. (2015) and Høyer et al. (2012), 
systematic differences of various space-based SST measurements in the 
Arctic Ocean, estimated by comparisons with buoys and ship-based 
measurements, range from 0.3 to 0.5 °C depending on the season and on 
the sensor. The temporal and spatial resolution of the SST fields ob
tained by different optimal analyses vary significantly. This results in 
significant differences in the estimated SST over highly dynamical and 
variable regions such as river plumes. A satellite SSS bias related to SST 
may also be due to flaws in the dielectric constant model that links TB 
to SSS and SST (Dinnat et al., 2019). The presence of badly detected sea 
ice can also lead to negative bias on the retrieved SSS (Tang et al., 
2018). 

The satellite SSS validation is made difficult because of the strong 
vertical haline stratification observed in the upper Arctic Ocean waters, 
as L-band radiometer only senses the top centimeter of the ocean 
(Boutin et al., 2016) and most in-situ sensors probe salinity much 
deeper (meters). This stratification varies geographically and tempo
rally. The depth of the mixed layer (ML) may be shallower than 10 m in 
summer in some regions such as the Beaufort Sea (Peralta-Ferriz and 
Woodgate, 2015). 

This paper focuses on validating weekly fields derived from the 
European Space Agency (ESA) SMOS level 2 (L2) SSS, analyzing po
tential sources of errors and proposing improvements. A description of 
the data and methods is first given (section 2 and 3). The influence of 
stratification on the SSS validation is then investigated (section 4). A 
first correction of SSS is derived using the pseudo dielectric constant 

parameter retrieved by the SMOS ESA L2 processing (Waldteufel et al., 
2004). The influence of the prior SST on SSS retrieval is further ana
lyzed (section 5). Finally, corrected SMOS weekly SSS are compared 
against surface salinity from TOPAZ reanalysis and in situ measure
ments from vessels transect to assess the product content from short to 
interannual time scales (section 6). 

2. Data 

2.1. Satellite related parameters 

2.1.1. SST 
In the SMOS L2 SSS processor, SST provided by European Centre for 

Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting 
System (SSTECMWF) are used as priors in the SSS retrievals. These 
forecasts are initialized 6 to 12 h before by OSTIA SST (Donlon et al., 
2012; ECMWF, 2016). The OSTIA SST analysis is generated using a 
multiscale interpolation of various satellite SST (infrared and micro
wave SST) and in-situ measurements at a grid spacing close to 5 km. 

In this paper, we compare SSTECMWF with the 9 km grid resolution 
infrared and microwave OI SST produced by REMSS (SSTREMSS) that 
relies on an optimal interpolation of infrared and microwave mea
surements, but no in-situ measurements (http://www.remss.com/ 
measurements/sea-surface-temperature/oisst-description/). The influ
ence of the SST differences onto the retrieved SSS is estimated as de
scribed in section 5.3. 

2.1.2. SMOS L2 SSS and Acard 
We use the SMOS L2 SSS (uncorrected for Land Sea Contamination) 

v662 distributed by ESA from 2011 to 2017 in the region bounded by 
latitude 60°N and 90°N. These products are organized in ½ orbits of 
instantaneous SSS retrievals. The principle of the ESA L2 SMOS SSS 
retrieval is recalled in (Boutin et al., 2018; section 3.1 and documents 
cited herein). SSS are oversampled over an Icosahedral Snyder Equal 
Area (ISEA) grid at 15 km resolution but the mean spatial resolution of 
ESA L2 SMOS SSS is close to 50 km. The dielectric constant model of sea 
water used in the SMOS processor is the Klein and Swift (1977) model 
(hereafter KS). 

We also use the pseudo dielectric constant (Acard) parameter. Acard 
is an effective L-band dielectric constant retrieved from ~hundreds 
SMOS multi-angular TB, independent of any SSS or dielectric constant 
model assumption. It was designed to integrate all available informa
tion about surface dielectric characteristics (Waldteufel et al., 2004). 
Acard allows to synthesize in one parameter the information on the 
dielectric constant that is contained in all SMOS TB. Since the noise on 
individual TB is large (2−3K), Acard synthesis allows a more precise 
filtering than a filtering applied on each individual TB. SMOS SSS and 
Acard are retrieved using a Bayesian approach through the minimiza
tion of the χ2 cost function: 
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where N is the number of measurements available for retrievals in 
vertical and horizontal polarizations at different incidence angles θn, Pi 

are prior parameters, Tbmeas are measured TB corrected for some phe
nomena, Tbmod are modeled TB. These various components are de
scribed for each retrieval in Table 1. Retrievals are initialized with 
European Centre for Medium-Range Weather Forecasts (ECMWF) (wind 
speed (WSECMWF), SST (SSTECMWF)). In case of SSS retrieval, both wind 
speed (WSL2) and SST (SSTL2) are retrieved together with SMOS SSS 
(SSSL2). In case of Acard retrieval (AcardL2) only SST (SSTACARD) is 
retrieved together with Acard. A detailed description of the Acard re
trieval in the L2 Ocean Salinity processor is given in appendix-A. 

Acard as simulated with KS sea water dielectric constant and ice 
dielectric constant reported in (Ulaby et al., 1990), varies from 
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approximately 50 in pixels totally covered with sea water to a value 
close to 0 in pixels totally covered by ice. Hence, pixels partially cov
ered by sea ice exhibit lower Acard values than pure water pixels. 

2.1.3. Pre-processed SMOS L3 maps 
Level 3 (L3) 7-day moving averages of SMOS ESA L2 parameters are 

produced each day. The 15-km ISEA grid is kept from L2 to L3, in order 
to avoid spatial smoothing. Only pixels further than 40 km from land 
are considered. Each SSS or Acard entering the 7-day average is 
weighted by a Gaussian weight function with a 3-day standard devia
tion and by the L2 uncertainty taken as the L2 SSS theoretical error 
multiplied by the χ2 value (L2 SSS error and χ2 estimates are described 
in Boutin et al., 2018). Level 2 products' flags raised for strong sunglint 
(‘Dg_sun_glint_fov’), moonglint (‘Dg_moonglint’), or galactic glints 
(‘Dg_galactic_Noise_Error’) are filtered out. L2 measurements for which 
WSECMWF is lower than 3 m.s−1 or greater than 12 m.s−1 are not 
considered due to larger uncertainties with the roughness model for 
these ranges of wind speed. L3 SSS uncertainty is estimated through an 
error propagation of L2 SSS uncertainty estimates. 

Frequent revisit of polar areas by SMOS allows typically between 0 
and 50 L2 retrievals in each pixel within 7 days. We remove L3 pixels 
with less than five L2 retrievals and with an average distance to the 
center of the SMOS track higher than 200 km in order to minimize the 
influence of uncertain measurements at the edge of the swath. We name 
SSSSMOS the SMOS SSS obtained after this processing. 

2.2. Model reanalysis 

We use ARCTIC_REANALYSIS_PHYS_002_003 distributed by the 
Copernicus Marine Environment Monitoring Service (CMEMS). This 
product is based on the TOPAZ system in its version 4 (Sakov et al., 
2012) that uses the HYCOM model (Chassignet et al., 2009). The 
TOPAZ reanalysis ingests various in-situ and satellite measurements in 
order to provide fields of temperature, salinity, sea ice drift or sea ice 
concentration. Salinity measured by Argo floats and some research 
cruises are assimilated. TOPAZ does not assimilate SMOS SSS. 

The initialization of the model is performed in 1973 with a com
bination of World Ocean Atlas climatology (WOA05) and Polar Science 
Center Hydrographic Climatology (PHC version 3.0). In addition to the 
initialization, a climatology of river runoff is used in order to resolve 
remaining inaccuracies in evaporation and run-off (CMEMS Arctic 
Ocean Physical Reanalysis Product User Manual). The river discharge 
monthly climatology is derived using the Total Runoff Integrating 
Pathways (TRIP, Oki and Sud., 1998) and run-offs estimates from ERA- 
interim. SMOS SSS are compared with TOPAZ surface salinity simulated 
at 0 m depth (SSSTOPAZ). We also used Sea Ice Concentration (SIC) from 
TOPAZ reanalysis in order to study the influence of sea ice on SMOS 
SSS. 

2.3. In-situ measurements 

Satellite L3 parameters are collocated with in situ measurements 
described below using a nearest neighbor criteria. 

2.3.1. Argo profilers 
Salinity and temperature from Argo profiling floats are taken from 

the Coriolis GDAC (Global Data Argo Center, http://www.coriolis.eu. 
org/). Only measurements flagged as good (flag 1), between 1 and 10 m 
depth are used. 

Argo floats are mainly located in the North Atlantic Ocean between 
60°W and 20°E (Fig. 1A), with a few floats in the Chukchi Sea. This 
spatial distribution results in a very peaky salinity distribution, with a 
salinity mode close to 35 pss and very few salinities below 34pss 
(Fig. 1D). 

2.3.2. CTD profiles 
A large part of the CTD profiles is downloaded from the Coriolis 

data center. We also consider CTD profiles:  

• from two NABOS cruises, in 2013 (Ivanov et al., 2013) and 2015 
(Polyakov et al., 2015), in the Kara Sea, Laptev Sea and East-Si
berian Sea;  

• from the Arctic Floating University collected in 2012 (Makhotin and 
Ivanov, 2018a,b,c), 2013 and 2014 in the Barents Sea,  

• collected in the Laptev Sea and East-Siberian Sea during Swerus C-3 
cruise (Björk, 2017);  

• in the Beaufort Sea from the Beaufort Gyre Exploration Project 
website (https://www.whoi.edu/website/beaufortgyre/home). 

Only measurements between 1 and 10 m are considered. We noticed 
a few CTD erroneous measurements. In order to ensure that suspicious 
measurements are not considered in the validation, we apply a 3σ-fil
tering with respect to SSSTOPAZ (see section 2.3; only in-situ measure
ments with an absolute difference between Sin-situ and SSSTOPAZ lower 
than 3σ (5.85pss) are kept). 

CTD casts in the Arctic Ocean cover a larger range of temperature 
and salinity than Argo (Fig. 1B, D). Indeed, the CTD dataset samples 
very low salinity areas in the Arctic Ocean in the Beaufort gyre or river 
plumes, as for example in the Laptev Sea or East-Siberian Sea. 

2.3.3. Underway thermosalinographs (TSG) 
Underway TSG data used in this study are recorded by 4 different 

vessels: the R/V Heincke, the R/V Polarstern, the R/V Mirai and the S/V 
Tara. Data of R/V Heincke and R/V Polarstern are downloaded on 
PANGAEA website (https://www.pangaea.de) and listed in the 
Appendix-B. R/V Mirai data of the year 2012 (JAMSTEC, 2013a), 2013 
(JAMSTEC, 2013b) and 2014 (JAMSTEC, 2015) are downloaded on the 
DARWIN website of JAMSTEC (http://www.godac.jamstec.go.jp/ 
darwin/e). S/V Tara measurements, that were quality checked at LO
CEAN, are available on the Coriolis website. TSG measurements are 
taken at different depths, from 1 m on S/V Tara to 11 m for R/V Po
larstern. 

Underway TSGs salinities are the most variable (Fig. 1C). Their 
statistical distribution is characterized by three modes, a first mode is 
between 34 and 36 pss, a second mode between 31 and 32 pss and, 
finally, a third mode between 25 and 27 pss. Underway TSGs have a 
similar geographical sampling as CTD casts but with more measure
ments closer to coast and a better sampling of river plumes. 

Table 1 
Summary of SMOS SSS and Acard retrieval principle in the SMOS L2OS processor.      

SSS retrieval Acard retrieval  

Modeled TBs Dielectric constant, wind, galactic, atmospheric model 
components 

Flat sea emission 

Measured TBs SMOS multi-angular TBs SMOS multi-angular TBs corrected from wind, galactic and atmospheric model 
components 

Prior variables WSECMWF, SSTECMWF SSTECMWF 

Retrieved variables SSSL2, WSL2, SSTL2 AcardL2, SSTAcard 
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3. Influence of salinity vertical stratification on satellite/in-situ 
comparisons 

3.1. Depth dependency: case of CTD profiles 

We analyzed the effect of stratification on the differences between 
in-situ salinity (Sinsitu) and SSSSMOS. Fig. 2 presents the effect of strati
fication on mean comparisons between Sinsitu and SSSSMOS considering 
different depths. We consider here only CTD casts which provide the 
most complete depth and spatial coverage in the studied areas. Two 
cases are examined: cases with a difference lower than −0.1 pss be
tween shallower (salinity average from 1 m to 5 m) and deeper levels 
(salinity average from 5 m to 10 m) named “stratified” cases 
( <S S pss0.1insitu m m insitu m m[0 :5 ] [5 :10 ] ) and cases with a 
difference higher than −0.1 pss between shallower (salinity 
average from 1 m to 5 m) named “no-stratified” cases 
( >S S pss0.1insitu m m insitu m m[0 :5 ] [5 :10 ] ). The −0.1 pss 
threshold is chosen arbitrary in a context of SSS validation. For 
“stratified cases”, we observe a continuously increasing difference be
tween Sinsitu and SSSSMOS with depth. In the “no-stratified” cases, as 
expected the difference is stable as a function of depth, but a slight 
difference remains between 1 m and 2 m depth (Fig. 2A). Stratified 

cases are mainly recorded over shelf seas and in river plumes areas 
(Fig. 2B). Cases without stratification are mainly recorded in the North 
Atlantic and Barents Sea. Considering 3228 CTD profiles: 81% are 
considered as not stratified whereas 19% are considered as stratified 
(Fig. 2C). Comparison of SSSSMOS with Sinsitu at all depths show a higher 
scatter for “no-stratified” cases than for stratified cases (Fig. 2D). 

3.2. Study areas 

In the present study, we focus our investigations on five study areas 
representing two inflow shelves with low stratification (Barents and 
Chukchi shelves), two more-stratified interior shelves (Laptev and 
Beaufort shelves) and an Atlantic area. The details are as follows:  

• Beaufort Sea: between 155°W and 130°W and between 68°N and 
84°N; the Beaufort Sea is characterized by the presence of the 
Beaufort gyre and a river plume from the Mackenzie river; the 
collocation dataset records the lower salinity values in the Beaufort 
Sea;  

• Chukchi Sea: between 68°N and 76°N and between 155°W and 
180°W; the Chukchi Sea is a shallow sea dominated by a freshwater 
inflow from the Pacific Ocean; 

Fig. 1. In-Situ near-surface salinity measured at the location of (A) Argo floats (B) CTD casts in different study areas (1 - Beaufort Sea, 2 - Chukchi Sea, 3 - Laptev Sea, 
4 - Barents Sea, 5 – Atlantic area) and (C) underway TSG. (D) Probability density function (PDF) of salinity observed with the different devices. 
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• Laptev Sea: between 100°E and 140°E; the Laptev Sea is influenced 
by freshwater from the Lena river plume, an inflow of freshwater 
from the Kara Sea, and salty water from the Atlantic Ocean above 
the continental slope;  

• Barents Sea: between 75° and 80° N and between 15°E and 60°E; and 
between 60°E and 67°N and between15°E and 55°E; the Barents Sea 
is dominated by inflow from the Atlantic characterized by salty 
waters with respect to other study areas. The SSS variability of this 
area is less pronounced than in the previous areas.  

• Atlantic area: between 60°N and 65°N and between 40°W and 0°W; 
this area represents the highest SSS of the study and the lowest 
variability of the SSS. 

The depth of the in-situ measurement plays a different role in dif
ferent areas. Figs. 3 and 4 compare CTD measurements with SSSSMOS for 
each study area. In the salty regions (Barents Sea and Atlantic area,  
Fig. 3), the depth of in-situ measurements does not seem to influence 
strongly the relationship between Sinsitu and SSSSMOS. These areas 

demonstrate very stable mean (MoD) and STD (STDD) difference be
tween Sinsitu and SSSSMOS. 

In fresher regions (Fig. 5), in the Beaufort and Laptev Sea (Figs. 4A, 
B and 4E, F), where the runoff of the Mackenzie and the Lena river are 
observed, important differences between SSSSMOS and in-situ mea
surements are observed when the depth of the in-situ measurement 
increases. In the Laptev Sea, it is even stronger when the surface salinity 
is lower, indicating a stronger stratification. In the Chukchi Sea 
(Fig. 4C, D), the stratification effect is less pronounced than in the 
Beaufort and the Laptev Seas. Figs. 3 and 4 clearly show that, as ex
pected, stratification increases when the observed surface salinity de
creases. In the Beaufort Sea, the average difference between 1 m and 
10 m depth is −1.84 pss (Fig. 4B). In the Laptev Sea, average difference 
between 2 m and 10 m depth is −1.47 pss (Fig. 4F). The STDD between 
SSSSMOS and Sinsitu is also strongly affected by the stratification: in the 
Beaufort Sea STDD increase from 1.47 pss (1 m depth) to 2.29 pss (10 m 
depth) and from 1.83 pss (2 m depth) to 2.12 pss (10 m depth) in the 
Laptev Sea. 

Fig. 2. (A) Averaged differences between Sinsitu and SSSSMOS as a function of depth in stratified and not-stratified cases (shaded area represents 2 × standard 
deviation); (B) Geographical distribution of stratified and not stratified cases; (C) Statistical distribution of differences between shallower (salinity average from 1 m 
to 5 m) and deeper levels (salinity average from 5 m to 10 m) for different CTD profiles; (D) Statistical distribution of differences between SSSSMOS and in-situ salinity 
for stratified and not-stratified cases. “Stratified cases” ( <S S pss0.1insitu m m insitu m m[0 :5 ] [5 :10 ] ) are in blue and “not-stratified” cases 
( >S S pss0.1insitu m m insitu m m[0 :5 ] [5 :10 ] ) are in red. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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3.3. Selection of in-situ measurements for absolute SSS calibration and 
validation 

The selection of Sinsitu for comparison and validation with satellite 
SSS is a compromise between the need for a set of in-situ measurements 
representative of the whole Artic Ocean and the need for in-situ mea
surements representative of SMOS estimates (1 cm depth). 

We select Sinsitu according to depth in order to avoid as much as 
possible the effect of vertical stratification. However, in situ measure
ments between 1 m and 5 m depth cover much broader regions and in 
particular fresh areas not sampled by in situ measurements between 
1 m and 3 m depth (Appendix-C). Hence, for the validation purpose 
(section 5.2), the maximum depth of Sinsitu is set at 5 m. 

On the other hand, the absolute calibration (constant bias removal) 
of SMOS SSS is performed in a salty area less prone to stratification 
effects, the Barents Sea, where we only consider the uppermost Sinsitu. 

4. Novel corrections and filtering: methodology 

4.1. Sea ice and outliers filtering: Acard 

A main contamination of satellite SSS at high latitude comes from 
the presence of sea ice (Tang et al., 2018) which emissivity is much 
higher than the one of the surface ocean due to a much lower dielectric 
constant. Our filtering procedure will take advantage of L3 Acard. 

Acard may be retrieved directly from SMOS TB and a prior SST, 
considering only emissivity and Fresnel equations, independently from 
the dielectric constant model (Table 1). It is named AcardSMOS below. It 
is also possible to compute Acard (AcardKS) from a theoretical dielectric 
constant model using eq. [A2] (Appendix-A). We use the KS dielectric 
constant model also used to retrieve SSS in the L2 OS processor. The 
difference between AcardSMOS and AcardKS (SMOS SSS, ECMWF SST) 

(DAcard = AcardSMOS – AcardKS (SMOS SSS, ECMWF SST)) may result from 

Fig. 3. Effect of stratification on relationship between SSSSMOS and in-situ salinity measurements in salty regions: (A, C) coordinates of colocalizations between SMOS 
and CTD profiles in different study areas (Barents Sea, Atlantic area); (B, D) MoD between SSSSMOS and in-situ salinity for different depths (from CTD casts only, with 
shaded area representing 2 standard deviation). 
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Fig. 4. Effect of stratification on the relationship between SSSSMOS and in-situ salinity measurements in fresh regions: (A, C, E) coordinates of colocalizations between 
SMOS and CTD profiles in the different study areas (Beaufort Sea, Chukchi Sea, Laptev Sea); (B, D, F) MoD between SSSSMOS and in-situ salinity for different depths 
(from CTD casts only, with shaded area representing 2 standard deviation). 
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either: 

• an imperfect representation of the dielectric properties of the ob
served surface by the KS model, or,  

• uncertainties on the SSS and SST priors used to compute AcardKS, or,  
• residual errors in the correction of atmospheric, solar and sky glint, 

or sea surface roughness used to estimate the flat sea surface radio- 
brightness contrast, or,  

• And/or from corrupted SMOS TB (RFI, image reconstruction errors, 
etc.) used to retrieved AcardSMOS. 

In the following, we address uncertainties coming from the first two 
items. We compute AcardKS using retrieved SMOS SSS and ECMWF SST 
(AcardKS (SMOS SSS, ECMWF SST)). Fig. 5A illustrates the relationship be
tween SSS and Acard for different SST. Academic simulations (not 
shown) suggest that AcardSMOS is much lower than AcardKS (SMOS SSS, 

ECMWF SST) when sea ice is present within a SMOS pixel. 
Based on these considerations, we developed a two-step filtering 

methodology. As illustrated in Fig. 5B which represents AcardSMOS as a 
function of AcardKS (SMOS SSS, ECMWF SST) without applying any filtering: 
two main regimes are observed. The first regime (points on the diag
onal, above 40, Fig. 5B), corresponds to the expected behavior between 
AcardSMOS and AcardKS (SMOS SSS, ECMWF SST) in the absence of sea ice. 
The second regime (plateau in AcardKS, below 40, Fig. 5B) with large 

differences between AcardSMOS and AcardKS (SMOS SSS, ECMWF SST) is due 
to pixel partially covered by sea ice and/or an inappropriate use of KS 
in order to compute Acard in these cases (KS model is designed for sea 
ice free ocean conditions). We note that the probability to observe the 
second regime case strongly increases with an Acard value lower than 
47. In a first step, when Acard is less than 47, we apply a very restrictive 
filter by removing all pixels with a DAcard value lower than −0.1 
(Fig. 5C). In a second step, we filter out DAcard values lower than −0.21 
and larger than 0.52, that correspond respectively to the 0.05 and 0.95 
percentiles of DAcard distribution after ice filtering (Fig. 5D). 

4.2. Absolute calibration of SSS 

Considering differences with respect to upper Sinsitu in the Barents 
Sea (Fig. 3B), we add 1.29 pss to SMOS SSS for removing the SMOS SSS 
global bias. 

4.3. Correction related to uncertainty on the dielectric constant model 

Flaws in the dielectric constant model may lead to errors on both 
the retrieved SSSSMOS and SSTSMOS (as defined in Table 1) but not on 
AcardSMOS since the Acard retrieval is independent of any dielectric 
constant model. As a first approximation, we assume that errors in the 
dielectric model only induce biases in the retrieved SSSSMOS and not on 

Fig. 5. (A) Relationship between Acard and SSS at various SST considering KS model; (B) Scatterplot of AcardKS versus AcardSMOS without filtering; (C) same as (B) 
with ice filtering (first step); (D) same as (B) with ice filtering and outliers filtering (second step); (red) AcardSMOS = 47 threshold; (magenta) line corresponding to 
AcardKS = AcardSMOS. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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retrieved SST. We compare AcardSMOS with AcardKS computed with 
parameters available in the SMOS User Data Product, i.e. SSSSMOS and 
SSTECMWF. A first correction on SSSSMOS can then be determined using 
the following relationship that also consider absolute calibration (sec
tion 4.2.): 

= + +SSS SSS (Acard –Acard )
(SST , SSS )

1. 29SMOS A SMOS
KS SMOS

ECMWF SMOS (2)  

where 

=(SST, SSS) Acard (SST, SSS)
SSS

.KS

Fig. 8 shows differences between AcardSMOS and AcardKS. AcardSMOS 

is plotted as a function of SST and SSSSMOS A - 1.29 in order to be 
comparable to AcardKS computed with SSSSMOS (Fig. 6A). Differences 
between AcardSMOS and AcardKS are larger for low SSS and low SST 
(Fig. 6C). This correction integrates different biases that can not be 
disentangled in this study: 1) SSS bias coming from the KS model; 2) 
SSS bias due to a potential difference between SST retrieved with SMOS 
and SSTECMWF. 

4.4. Correction linked to uncertainty on prior SST 

We observe that in some regions such as the Lena river plume in the 
Laptev Sea, SSTECMWF is nevertheless underestimated with respect to 
upper in-situ temperature, Tinsitu. As shown in Appendix-D (Fig. D1), 
stronger SST gradient are observed in REMSS SST product compared 
with OSTIA SST used in ECMWF. Based on the KS model, it is possible 
to compute a second correction of the retrieved SSS considering sensi
tivity to SST and selecting another SST product as reference (here 
chosen to be REMSS SST): 

= ++SSS SSS (SST SSS )
(SST SSS )

(SST SST )SMOS A T SMOS A
ECMWF SMOS

ECMWF SMOS
ECMWF REMSS

(3)  

= =where (SST, SSS) TB(SST, SSS)
SSS

and (SST, SSS) TB(SST, SSS)
SST

.

5. Results and validation 

5.1. Validation of sea ice filtering 

To assess the efficiency of the Acard filtering for sea ice we used SIC 
data from TOPAZ and we analyze a case study in the Laptev Sea. As 

illustrated on Fig. 7, without the Acard filtering, low SSS values are 
observed in the northernmost areas in the vicinity of sea ice edges 
because of a too permissive filtering of ice in the ESA L2 processor. At 
these locations, negative DAcard and positive SIC from TOPAZ are ob
served. 

Over the whole Arctic Ocean and period investigated (Fig. 8), Acard 
ice filtering removes all pixels with SIC larger than 2.5% and most 
pixels with SIC in the range of 0%–2.5%. MoD and STDD with respect to 
in-situ SSS significantly decrease after filtering and do not show a de
pendency to TOPAZ SIC anymore suggesting that the remaining SMOS 
pixels are not significantly polluted by sea ice. These results demon
strate the efficiency of Acard ice filtering over using an external SIC 
product. Hereafter, we refer to SSSSMOS as the SMOS SSS obtained after 
the above described processing. SSSSMOS considered in the following are 
therefore sea ice filtered. 

5.2. Validation of the SSS product 

The main motivation for the temperature-dependent correction is 
found in the distribution of SST. As shown in Fig. 9, SSTREMSS are closer 
to in-situ SST than SSTECMWF. Depending on the Arctic Ocean regions 
considered, two modes are generally present in both the distribution of 
SSTREMSS and in-situ SST (Fig. 10 and 11) but the mode corresponding 
to higher temperatures is almost absent in the SSTECMWF distribution. 

In order to make a realistic comparison of the statistical distribu
tions of SMOS and in situ SSS, in each area we add noise to Sinsitu to 
mimic SMOS noise, considering a Gaussian noise being derived from 
the theoretical uncertainty of the collocated SMOS L3 SSS. 

The positive effect of the correction is clear in Chukchi and Laptev 
Seas. For these two regions, SSTECMWF distribution clearly under
estimates the warmest SST mode (Figs. 10H, I) in comparison with 
REMSS, or, Tinsitu. This results into a distribution of SMOS SSS without 
the SSTREMSS correction showing an important number of under
estimated SMOS SSS (Fig. 10B, C). This correction results in a dis
tribution of SMOS SSS closer to the Sinsitu distribution (Figs. 10E, F), 
thus the STDD and MoD decrease and the correlation coefficient (r) 
increases (Table 2) for the Chukchi Sea and the Laptev Sea. 

To a lower extent, the same kind of difference is observed in the 
Beaufort Sea (Figs. 10A, D, G). In the Barents Sea, the SSTECMWF dis
tribution is closer to that of Tinsitu and SSTREMSS than for the other study 
areas and our correction only brings a very small improvement 
(Figs. 11A, D, G and STDD in Table 1). Finally, the Atlantic area pre
sents a degradation of SSS after Acard difference and SST corrections 
(Figs. 11B, E, H and STDD in Table 2). This is mainly due to the Acard 
correction (Appendix-E). Indeed, this correction assumes that error in 

Fig. 6. (A) AcardSMOS as a function of SSTECMWF and SSSSMOS A – 1.29 AcardKS(SMOS SSS,ECMWF SST); (B) AcardKS(SMOS SSS,ECMWF SST) as a function of SSTECMWF and 
SSSSMOS; (C) Difference between AcardSMOS and AcardKS. SMOS retrieved variables are in black, computed variables are in magenta. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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the SSS estimation comes from errors in dielectric constant model and/ 
or from erroneous prior SST. In the Atlantic area, RFI likely disturb TB 
such that their angular variation cannot be described with a Fresnel 
model, and therefore our correction is not appropriate. 

Considering the whole Arctic Ocean (Figs. 11C, F, I), the distribu
tion of the corrected SMOS SSS fits better Sinsitu. After correction, the 
STDD and MoD improve from 1.46 pss to 1.28 pss and from −1.54 pss 
to −0.27 pss, respectively; r increases from 0.92 to 0.94 (Table 2). 

Over the whole Arctic Ocean, the difference between SSTREMSS and 
Tinsitu is less than the difference observed between SSTECMWF and Tinsitu. 
The difference SSTECMWF - Tinsitu exceeds −1 °C for Tinsitu between 3 °C 
and 4 °C, temperatures that are often present in the Arctic Ocean 
(Figs. 9 and 11I). In this SST range, the correction is efficient to reduce 
the satellite SSS differences with respect to Tinsitu. The overestimation of 
SST observed with both ECMWF and REMSS products for SST lower 
than 0 °C (Fig. 9) should lead to an overestimation of SSS (Fig. 12). 

Fig. 7. L3 post-processing flagging for the study case of 2012-09-01: (A) SMOS SSS pre-processed L3 estimates; (B) TOPAZ reanalysis SIC; (C) differences between 
AcardSMOS and AcardKS (SMOS SSS, ECMWF SST); (D) SMOS SSS estimates after filtering. 

Fig. 8. Mean difference and STDD between SMOS SSS and in-situ salinity and PDF of collocations per bin (bin size: 1%) of TOPAZ SIC; (A) without filtering; (B) with 
filtering. 
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However, an underestimation of SSS is observed for the coldest surface 
temperatures without any link with SST difference, likely due to some 
remaining very low sea ice concentration or very near surface fresh
ening close to sea ice unidentified with in-situ measurements. 

6. Comparisons between SMOS SSS and TOPAZ SSS 

6.1. Weekly variability 

To assess the capability of the corrected SMOS SSS products to re
produce the short scale SSS variability in the Arctic relative to an ocean 
circulation model, we compare hereafter SSSSMOS A+T and SSSTOPAZ 

(Table 3) to a reference salinity provided by underway TSG tracks ac
quired in three different seas: Greenland Sea (case study 1), Laptev Sea 
(case study 2) and Chukchi Sea (case study 3). For the case study in the 
Greenland Sea, the vessel is arriving from an area covered by sea ice. It 
first crosses an area of low salinity before an area with SSS ~ 35 pss. 
Both SSSSMOS A+T and SSSTOPAZ do not reach the lower values recorded 
by the TSG (Fig. 13A, B). Only one SSSSMOS A+T pixel reaches a value 
lower than 26 pss, but an effect of ice may not be excluded even if the 
SIC from TOPAZ indicates no ice. SSSSMOS A+T exhibits better STDD and 
MoD than SSSTOPAZ with respect to the TSG. For the study case in the 
Laptev Sea (Fig. 13C and 13D), SSSSMOS A+T show a positive bias (larger 
than SSSTOPAZ) for higher SSS values recorded by the TSG contrary to 
SSSTOPAZ which fits well with these salinities. However, the large 
freshening (more than 10 pss) observed by the vessel crossing the Lena 
river plume is very well represented by SSSSMOS A+T contrary to SSST

OPAZ, which misses the location of the river plume and its intensity. 
Nevertheless, SSSSMOS A+T demonstrates in this case a higher STDD 
than SSSTOPAZ. In the Chukchi Sea (Fig. 13E and 13F), the underway 
TSG presents a large variability also observed by SSSSMOS A+T but with 
some bias. This variability is not recorded by SSSTOPAZ. The STDD and 
bias with respect in situ data, are lower with SSSSMOS A+T than with 
SSSTOPAZ by ~0.2 and 0.3, respectively. 

In Fig. 14, SSSSMOS A+T and SSSTOPAZ distributions are compared 
with Sinsitu distributions over the whole Arctic Ocean. The distribution 
of SSSSMOS A+T compares very well with the distribution of Sinsitu 

(Fig. 14A). One mode of the Sinsitu distribution (lower SSS) is totally 
absent in the SSSTOPAZ distribution. STDD (Table 2) is 1.28 pss for 
SSSSMOS A+T and 1.86 pss for SSSTOPAZ. r reaches 0.94 with SSSSMOS A+T 

while it is 0.89 with SSSTOPAZ. The distribution of errors for SSSSMOS 

A+T presents only one mode contrary to SSSTOPAZ that present two 
modes due to the absence of the lower SSS (Fig. 14B). 

The scatterplot of SSSSMOS A+T versus Sinsitu further indicates an 
overall agreement between SSS estimates from space and in-situ mea
surements. In addition, the SMOS SSS uncertainty estimated in the L3 
product (see section 2.1.2) seems to be a good indicator of the quality of 
the considered SSSSMOS A+T estimate. 

6.2. Interannual variability 

We then compare the SSSSMOS A+T interannual variability to SSST

OPAZ interannual variability. For each year between 2011 and 2017 we 
average SSS between August and October in order to consider the 
season with the lowest sea ice coverage in the Arctic Ocean. The 
average is weighted by the uncertainty value of each L3 SSS estimate.  
Fig. 15 is a comparison for the 2012, 2013 and 2014 years and Fig. 16 is 
a comparison for the 2015, 2016 and 2017 years. Contrary to TOPAZ 
that provides an SSS value for each pixel of the Arctic Ocean, SSSSMOS 

A+T coverage depends on the sea ice extent. For the comparison we take 
into account SSSTOPAZ only when a SSSSMOS A+T value exists. 

A good overall consistency in the Arctic Ocean is observed between 
SSSSMOS A+T and SSSTOPAZ interannual variations. However, SSSSMOS 

A+T exhibits a higher interannual and spatial variability than SSSTOPAZ. 
Furthermore, some areas behave differently with SSSSMOS A+T in 
comparison with SSSTOPAZ. For the whole period and as observed pre
viously regarding Sinsitu (Table 2), the freshening of the Beaufort gyre is 
strongly underestimated with SSSTOPAZ compared to SSSSMOS A+T. The 

Fig. 9. Difference of SSTECMWF – Tinsitu (blue line) and SSTREMSS - Tinsitu (blue dashed line) as a function of Tinsitu. Distribution of Tinsitu (black line); (bin size: 1 °C – 
sliding window). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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variability and spatial extent of Arctic Ocean river plumes also differ 
strongly between SSSTOPAZ and SSSSMOS A+T. In the Kara Sea, the lo
cations and strength of the Ob and the Yenissei river plumes are highly 
variable from one year to the other (freshening minimum in 2012 and 
2016, maximum in 2015). This variability is captured by SSSTOPAZ and 
SSSSMOS A+T, but with larger amplitudes in SSSSMOS A+T, in particular 
in 2015. River plume propagation to the north or/and to the east in the 
East-Siberian Sea are not captured in the same way by SSSTOPAZ and 

SSSSMOS A+T. For example, in 2015, the strong northward advection of 
Lena river plume shown by SSSSMOS A+T is not observed with SSSTOPAZ. 
Similar observations are made in the Bering strait with the entry of 
Pacific water or low SSS water in the Greenland Sea and in the Baffin 
Bay. 

Contrary to SSSTOPAZ, freshening patterns are observed at the 
northern boundary of the field covered by SSSSMOS A+T (limitation due 
to the presence of permanent ice). The cause of this freshening is not 

Fig. 10. (A, B, C) Distribution of SMOS SSS minus Sinsitu without correction (black line) and with correction (dashed line) for the different study areas and for the 
whole Arctic Ocean (1 pss SSS difference bin – sliding window); (D, E, F) distribution of SSSSMOS (black line), SSSSMOS A+T (dashed line) and noisy (using SSSSMOS 

theoretical uncertainty) Sinsitu (red line) for the different study areas and for the whole Arctic Ocean (1 pss salinity bin – sliding window); (G, H, I) In-Situ (red), 
ECMWF (black) and REMSS (green) SST distributions (1 °C SST bin – sliding window). Low salinity study areas: (A, D, G): Beaufort Sea; (B, E, H): Chukchi Sea; (C, F, 
I) Laptev Sea. 

A. Supply, et al.   Remote Sensing of Environment 249 (2020) 112027

12



totally explained and may come from a real freshening due to ice 
melting or an imprint of sea ice due to an imperfect filtering of sea ice. 

7. Conclusion and discussion 

We present a methodology that significantly improves SSS estimates 
in the Arctic Ocean. It is applied to SMOS L3 SSS derived from ESA level 
2 operational processing (L2 OS v662). 

In a first step, the difference between a pseudo dielectric constant, 
Acard, retrieved from SMOS measurements and a theoretical Acard 

estimated with KS model is used to efficiently filter out biased SSS in 
pixels partially covered by sea ice. 

A global correction (1.29 pss) over the whole Arctic Ocean is ap
plied, to take into account the uncertainty associated with the absolute 
calibration of the measurements. 

The Acard difference is then used as a metric of the biases in the KS 
model for the dielectric constant of sea water. An additional SST cor
rection derived using an external SST satellite product, SSTREMSS, is 
performed. The latter is motivated by observed difference of statistical 
distribution between SSTECMWF (which is used in the retrieval of SSS) 

Fig. 11. (A, B, C) Distribution of SMOS SSS minus Sinsitu without correction (black line) and with correction (dashed line) for the different study areas and for the 
whole Arctic Ocean (1 pss SSS difference bin – sliding window); (D, E, F) distribution of SSSSMOS (black line), SSSSMOS A+T (dashed line) and noisy (using SSSSMOS 

theoretical uncertainty) Sinsitu (1 pss salinity bin – sliding window); (G, H, I) In-Situ (red), ECMWF (black) and REMSS (green) SST distributions (1 °C SST bin – sliding 
window). High salinity study areas: (A, D, G) Barents Sea, (B, E, H) Atlantic Area, and (C, F, I) the whole Arctic Ocean. 

A. Supply, et al.   Remote Sensing of Environment 249 (2020) 112027

13



and Tinsitu. The correction strongly improves the SMOS SSS estimate. 
This relies on the importance of correcting prior SST in cold regions 
where the sensitivity of TB to SSS is low. The effect of the SST cor
rection is particularly noticeable in the Arctic Seas where river inflows 
generate strong SST gradients associated with strong SSS gradients: 
after this SST correction the SSS variability becomes much closer to the 
observations (Fig. 14a). 

Our correction makes use of SSTREMSS obtained by merging micro
wave and IR SST. The use of the REMSS “microwave only” OI SST gives 
very close statistical results (Appendix-F). Nevertheless, statistics ob
tained with SSTREMSS “microwave only” are slightly better for two 
reasons: 1/ the sea ice filtering of SSTREMSS “microwave only” is more 
stringent than the one of SSTREMSS and, in some cases, than the one 
based on SMOS Acard; 2/ SSTREMSS “microwave only” are not provided 
too close from the coast where SSS uncertainty is higher. 

Our correction does not reveal the complexity of biases resulting 
from land/sea contrast, but land/sea bias correction in the Arctic Ocean 
is a challenging issue that needs to be investigated in further studies. It 
is likely one of the reasons why SSS calibration needs to be adjusted. 
Another limitation of the correction methodology is that we only con
sider issues with SST and dielectric constant model: surface roughness 
effects linked to e.g. wind in limited fetch areas or to surfactants could 
also play a role, but these effects were out of the scope of our study. 

The quality of our new product is assessed by comparison with 
various in-situ measurements (Argo, Underway TSG and CTD casts) and 
with an ocean model outputs (TOPAZ). In-situ measurements cover a 
large range of SSS. The in-situ salinity measurement depth (between 
1 m and 10 m) is shown to have a strong impact on the difference 
between SSSSMOS and Sinsitu, especially in low SSS areas (e.g., rivers 
plumes) that are often very stratified in salinity close to the surface. 
Hence only Sinsitu between 1 m and 5 m depth are retained for the 
validation. 

The corrected SSS better performs than TOPAZ reanalysis, essen
tially in areas of large temporal and spatial variability. Over the whole 
Arctic Ocean, STDD between weekly corrected SMOS SSS and Sinsitu is 
of 1.28 pss, while STDD between TOPAZ SSS and Sinsitu is of 1.86 pss. 
The statistics of the comparisons with Sinsitu in the various regions (the 
Beaufort, Chukchi, Laptev and Barents Seas, and an Atlantic Area) are 
more stable from one study area to another with corrected SMOS SSS 
than with TOPAZ SSS. SMOS STDD vary between 0.94 pss and 1.23 pss, 
while TOPAZ STDD vary between 0.50 pss and 1.89 pss. The mean 
differences obtained with SMOS SSS vary between −1.28 pss and 0.11 
pss while the ones obtained with TOPAZ SSS vary between −0.19 pss 
and 3.67 pss. SMOS SSS captures high variability in fresh Arctic Seas 
with a favorable signal to noise ratio as shown by high correlation le
vels on the order of 0.8 between SMOS SSS and in-situ Sinsitu. It is not 
the case in less variable salty Arctic Seas (Table 2). 

While collocations with in-situ measurements, in particular un
derway TSG from research vessel, demonstrates SMOS ability to capture 
SSS (temporal and spatial) variability at short scale, SMOS SSS seasonal 
averages bring a new perspective on the SSS variability in the Arctic 
Ocean. Compared with the TOPAZ reanalysis, it shows a larger varia
bility in river plumes and differences of pattern, e.g. in the Beaufort 
gyre (Figs. 15 and 16). These observations suggest complementarity 
between SMOS SSS and TOPAZ reanalysis products. This was already 
demonstrated by Xie et al. (2019) for Arctic SSS produced at the Bar
celona Expert center, but this is even more evident with this new pro
duct in very variable Arctic Seas (Appendix-H, Laptev Sea and Beaufort 
Sea). 

The presented SSS product demonstrates valuable performances 
compared to other SSS products in Arctic Ocean (Appendix-H). It pro
vides avenues for improvement in the ESA L2 OS processor concerning 

Table 2 
Comparisons between SMOS SSS, without and with correction, TOPAZ SSS and 
Sinsitu for the different study areas (N is the number of collocations).       

Cases study Statistic indicator SSSSMOS SSSSMOS A+T SSSTOPAZ  

Beaufort Sea MoD (pss) −2.12 −0.83 3.67 
STDD (pss) 0.96 0.88 1.18 
r 0.86 0.88 0.86 
N 3912 3912 3912 

Chukchi Sea MoD (pss) −1.50 −1.28 1.97 
STDD (pss) 1.47 1.23 1.78 
r 0.84 0.88 0.86 
N 90,721 90,721 90,721 

Laptev Sea MoD (pss) −1.97 0.11 1.51 
STDD (pss) 1.82 1.17 1.89 
r 0.53 0.75 0.04 
N 4048 4048 4048 

Barents Sea MoD (pss) −1.59 −0.17 −0.19 
STDD (pss) 0.96 0.94 0.50 
r −0.03 −0.04 0.19 
N 10,879 10,879 10,879 

Atlantic Area MoD (pss) −1.29 −0.51 0.01 
STDD (pss) 1.02 1.13 0.10 
r 0.01 −0.05 0.70 
N 2876 2876 2876 

Arctic Ocean MoD (pss) −1.54 −0.27 1.25 
STDD (pss) 1.46 1.28 1.86 
r 0.92 0.94 0.89 
N 156,986 156,986 156,986    

Fig. 12. Averaged differences between SSSSMOS+ 1.29pss (in order to consider 
the general bias) or SSSSMOS A+T and Sinsitu and PDF of collocations per bin of 
in-situ SST; (bin size: 1 °C – sliding window). 

Table 3 
MoD, STDD and r between SSSSMOS A+T or TOPAZ SSS and in-situ measure
ments for the underway TSG case studies.      

Cases study Statistic indicator SSSSMOS A+T SSSTOPAZ  

Case study 1 MoD (pss) 1.25 1.41 
STDD (pss) 1.27 1.43 
r 0.88 0.96 

Case study 2 MoD (pss) 0.59 0.25 
STDD (pss) 1.37 0.98 
r 0.84 0.69 

Case study 3 MoD (pss) −0.15 0.51  
STDD (pss) 1.24 1.43  
r 0.56 0.12 
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Fig. 13. (A, C, E) SMOS SSS measurements collocated with underway TSG measurements; (B, D, F) Time series of SMOS SSS (black) and TOPAZ SSS (green) 
collocated with underway TSG salinity measurements (red). Case studies in the Greenland Sea (A, D, G), in the Laptev Sea (B, E, H) and Chukchi Sea (C, F, I). 
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the detection of sea ice, the correction of dielectric constant and SST 
related flaws. Moreover, additional work is needed in areas with lower 
SSS variability and RFI contamination as in the North Atlantic. In ad
dition to the methods presented in this study, a correction for the land/ 
sea contamination and the latitudinal biases as presented by Boutin 
et al. (2018) or/and an optimal interpolation using complementarity 
between SMOS SSS and in-situ measurements could further improve 
SSS derived from SMOS mission in the Arctic Ocean. 

This study highlights the importance of sea ice filtering. In that 
respect, increasing the spatial resolution of L-band interferometric 
radiometer measurements to 10 km, as proposed by the SMOS-HR 
project (Rodrıǵuez-Fernández et al., 2019), would greatly help to better 
filter the ocean areas partially covered by sea ice and would allow to get 
closer to the ice edge and to land. 

This study highlights the importance of using an SST prior con
sistent with L-Band radiometric measurement for SSS retrieval in the 
Arctic Ocean. Ideally, the prior SST should be measured at the same 

spatial resolution and at the same time as the L-band measurement. One 
of the major CIMR (Copernicus Image Microwave Radiometer, Kilic 
et al., 2018) mission goal over the ocean is to provide simultaneous SSS 
and SST measurements but at different spatial resolution (SSS from the 
L-Band TB at ~60 km resolution and SST from the C/X-band channels 
at ~15 km). Joined and simultaneous SSS/SST estimates at the same 
resolution than the L-Band channel, i.e., 36 × 60 km2 will therefore be 
available from this sensor but at a rather low spatial resolution for the 
estimate of the SSS field. Complementarily, SMOS-HR interferometric 
mission goal is to provide L-Band TB and therefore SSS at a spatial 
resolution (~10 km) close to CIMR SST resolution but it won't include 
an independent SST sensor. Hence combining measurements from both 
missions would very likely improve SSS fields estimates in the Arctic 
Ocean. 

This study is limited to the analysis of SSS provided by the SMOS 
satellite mission in the Arctic Ocean. Nevertheless, during the period 
considered in this study, two other satellite missions, SMAP and 

Fig. 14. (A) Distribution of SSS for TOPAZ (magenta), SMOS (black) and Sinsitu (red) (B) Distribution of errors between SMOS SSS and Sinsitu (black) and TOPAZ SSS 
and Sinsitu (magenta) (C) Scatterplot of TOPAZ SSS versus Sinsitu; (D) Scatterplot of SMOS SSS versus Sinsitu with SMOS theoretical uncertainty coded in colour. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 15. SSS average for the period from August to October for year 2012, 2013 and 2014; (left column) SSSSMOS A+T; (right column) SSSTOPAZ.  
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Fig. 16. SSS average from August to October for year 2015, 2016 and 2017; (left column) SSSSMOS A+T; (right column) SSSTOPAZ.  
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Aquarius, have monitored SSS over the global ocean. The CCI + SSS 
project run as a part of ESA Climate Change Initiative aims at gen
erating improved and consistent multi-satellites SSS fields and should 
bring a decisive improvement to the level 4 SSS maps, especially in the 
Arctic Ocean due to the short revisit time allowed by the orbit config
uration of these satellites. The avenue for SMOS processing improve
ment that we propose should also benefit to the CCI + SSS products 
that incorporate SMOS measurements. 
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Appendix A. Acard retrieval in the SMOS level 2 processor 

As shown by Waldteufel et al. (2004), simultaneous retrieval of the real, e’, and imaginary part, e”, of dielectric constant from SMOS TB is an ill 
posed problem as the cost function, rather than a single minimum, exhibits a minimum valley, that can be represented analytically using a modified 
cardioid model. After carrying out the following change of variable: 

= + +e’ Acard (1 cos(Ucard)) cos (Ucard) Bcard

= +e” Acard (1 cos(Ucard)) sin (Ucard) (A1)  

which is equivalent to: 

= +Acard mcard /(mcard e’–Bcard)2

=Ucard tan (e”/(e’ Bcard))1

= +with:mcard ((e’ Bcard) e” )2 2 1/2 (A2)  

Bcard corresponds to the observed offset between the observed modified cardioid and the true analytical formulation for a cardioid model. With 
Bcard = 0.8 (optimal value that minimizes the retrieval error on Acard), it is possible to retrieve the parameter Acard with good accuracy: a 
minimum of χ2 is seen as a vertical line corresponding to a constant value of Acard and various values of Ucard. Local minima of χ2 are also observed 
for unrealistic negative values of Acard; as it will be described in the following, retrieval of such negative values are avoided by taking an error on 
prior Acard over the ocean of 20 units or by initiating the retrieval with low Acard value as low card are much better constrained. 

It is clear that the minimization of χ2 parameter does not allow to retrieve a single pair of (e’, e”) while it allows to retrieve a single value of 
Acard, Ucard remaining undetermined. 

We found that initiating the retrieval with low Acard prior value (Acardprior = 1) and large error on Acard (sA_card = 50) allows to avoid retrieval 
of negative Acard values while avoiding biases on low Acard values and gives the same result over ocean pixels as taking Acardprior deduced from 
mean SSS and SST. 

The ESA L2 Ocean Salinity processor retrieves Acard from SMOS Tb corrected from the roughness model plus atmospheric and galactic noise 
corrections. 

Appendix B. HEINCKE and POLARSTERN cruise track datasets used in this study.   

HEINCKE cruise track HE493 https://doi.pangaea.de/10.1594/PANGAEA.887938  

HEINCKE cruise track HE387 https://doi.pangaea.de/10.1594/PANGAEA.859752 
HEINCKE cruise track HE492 https://doi.pangaea.de/10.1594/PANGAEA.887937 
HEINCKE cruise track HE333 https://doi.pangaea.de/10.1594/PANGAEA.859705 
HEINCKE cruise track HE451–1 https://doi.pangaea.de/10.1594/PANGAEA.863418 
HEINCKE cruise track HE449 https://doi.pangaea.de/10.1594/PANGAEA.863416 
HEINCKE cruise track HE408 https://doi.pangaea.de/10.1594/PANGAEA.859774 
HEINCKE cruise track HE450 https://doi.pangaea.de/10.1594/PANGAEA.863417 
POLARSTERN cruise track ARK-XXVI/2 https://doi.pangaea.de/10.1594/PANGAEA.770035 
POLARSTERN cruise track PS109 https://doi.pangaea.de/10.1594/PANGAEA.889548 
POLARSTERN cruise track PS93.2 https://doi.pangaea.de/10.1594/PANGAEA.863229 
POLARSTERN cruise track ARK-XXVII/1 https://doi.pangaea.de/10.1594/PANGAEA.802811 
POLARSTERN cruise track PS99.1 https://doi.pangaea.de/10.1594/PANGAEA.873156 
POLARSTERN cruise track PS92 https://doi.pangaea.de/10.1594/PANGAEA.863234 
POLARSTERN cruise track ARK-XXVII/3 https://doi.pangaea.de/10.1594/PANGAEA.808835 
POLARSTERN cruise track ARK-XXVI/1 https://doi.pangaea.de/10.1594/PANGAEA.770034 
POLARSTERN cruise track ARK-XXVI/3 https://doi.pangaea.de/10.1594/PANGAEA.770828 
POLARSTERN cruise track ARK-XXVII/2 https://doi.pangaea.de/10.1594/PANGAEA.802812 
POLARSTERN cruise track PS107 https://doi.pangaea.de/10.1594/PANGAEA.889535 
POLARSTERN cruise track PS100 https://doi.pangaea.de/10.1594/PANGAEA.873158 
POLARSTERN cruise track PS93.1 https://doi.pangaea.de/10.1594/PANGAEA.863228 
POLARSTERN cruise track PS101 https://doi.pangaea.de/10.1594/PANGAEA.873145 
POLARSTERN cruise track PS99.2 https://doi.pangaea.de/10.1594/PANGAEA.873153 
POLARSTERN cruise track PS86 https://doi.pangaea.de/10.1594/PANGAEA.858880  
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Appendix C. Difference of repartition of in-situ measurements used in this study between 1-m and 3-m and between 1-m and 5-m 

Fig. C1. SSS of in-situ measurements used in the study (A) between 1-m and 3-m depth; (B) between 1-m and 5-m depth. 

Fig. C2. Density of in-situ measurements used in the study (A) between 1-m and 3-m depth; (B) between 1-m and 5-m depth.  

Appendix D. Example of differences recorded between SST from OSTIA and SSTREMSS. 

Fig. D1. Analyzed SST for 2015/08/15 from (Left) OSTIA; (Right) REMSS (MW + IR).  
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Appendix E. MoD, STDD and r between different versions of SMOS SSS and Sin-situ for the different study areas. The number of collocations 
is equivalent to the Table 1.       

Cases study Statistic indicator SSSSMOS SSSSMOS A SSSSMOS T SSSSMOS A+T  

Beaufort Sea MoD (pss) −2.12 −1.44 −1.51 −0.83 
STDD (pss) 0.96 0.98 1.08 0.88 
r 0.86 0.83 0.83 0.88 

Chukchi Sea MoD (pss) −1.50 −1.28 −0.49 −0.28 
STDD (pss) 1.47 1.60 1.18 1.23 
r 0.84 0.81 0.89 0.86 

Laptev Sea MoD (pss) −1.97 −1.39 −0.43 0.12 
STDD (pss) 1.82 2.16 1.07 1.17 
r 0.53 0.40 0.80 0.75 

Barents Sea MoD (pss) −1.59 −0.24 −1.49 −0.17 
STDD (pss) 0.96 0.97 0.94 0.94 
r −0.03 −0.02 −0.05 −0.02 

Atlantic Area MoD (pss) −1.29 −0.55 −1.25 −0.51 
STDD (pss) 1.02 1.15 1.00 1.13 
r 0.01 −0.05 0.02 −0.05 

Arctic Ocean MoD (pss) −1.54 −0.77 −0.99 −0.27 
STDD (pss) 1.46 1.60 1.32 1.28 
r 0.92 0.92 0.93 0.94  

Appendix F. MoD, STDD, r and N (number of collocations) between different versions of SMOS SSS or TOPAZ SSS and in-situ measurements 
for the different study areas (with SSSSMOS A+T derived using SSTREMSS in black and SSSSMOS A+T derived using SSTREMSS MWO in bold black – 
collocations are not exactly the same due to a difference of sea ice mask between SSTREMSS and SSTREMSS MWO, and a difference of coverage 
close from coast – colocations with in-situ measurements are the same between SSSSMOS, SSSSMOS A+T and SSSTOPAZ).      

Cases study Statistic indicator SSSSMOS SSSSMOS A+T SSSTOPAZ  

Beaufort Sea MoD (pss) −2.25 
−2.25 

−0.98 
−0.96 

3.99 
3.99 

STDD (pss) 0.94 
0.94 

0.83 
0.87 

1.07 
1.07 

r 0.81 
0.81 

0.84 
0.84 

0.81 
0.81 

N 3128 
3128 

3128 
3128 

3128 
3128 

Chukchi Sea MoD (pss) −1.39 
−1.39 

−0.21 
−0.27 

1.94 
1.94 

STDD (pss) 1.30 
1.30 

1.08 
1.07 

1.79 
1.79 

r 0.86 
0.86 

0.91 
0.90 

0.87 
0.87 

N 86,917 
86,917 

86,917 
86,917 

86,917 
86,917 

Laptev Sea MoD (pss) −2.45 
−2.45 

−0.17 
−0.19 

0.82 
0.82 

STDD (pss) 1.69 
1.69 

1.03 
1.01 

1.46 
1.46 

r 0.61 
0.61 

0.74 
0.75 

0.32 
0.32 

N 3190 
3190 

3190 
3190 

3190 
3190 

Barents Sea MoD (pss) −1.58 
−1.58 

−0.16 
−0.15 

−0.20 
−0.20 

STDD (pss) 0.95 
0.95 

0.93 
0.93 

0.49 
0.49 

r −0.07 
−0.07 

−0.05 
−0.05 

0.19 
0.19 

N 10,762 
10,762 

10,762 
10,762 

10,762 
10,762 

Atlantic area MoD (pss) −1.28 
−1.28 

−0.50 
−0.49 

0.01 
0.01 

STDD (pss) 0.99 
0.99 

1.10 
1.09 

0.10 
0.10 

r 0.02 
0.02 

−0.04 
−0.04 

0.70 
0.70 

N 2865 
2865 

2865 
2865 

2865 
2865 
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Arctic Ocean MoD (pss) −1.46 
−1.46 

−0.21 
−0.25 

1.20 
1.20 

STDD (pss) 1.31 
1.31 

1.15 
1.15 

1.86 
1.86 

r 0.93 
0.93 

0.95 
0.95 

0.89 
0.89 

N 148,655 
148,655 

148,655 
148,655 

148,655 
148,655   

Appendix G. Example of differences recorded between SSSSMOS A+T using SSTREMSS or using SSTREMSS MWO in comparison of differences 
between SSSSMOS and SSSSMOS A+T (using SSTREMSS). 

Fig. G1. (A) difference between SSSSMOS and SSSSMOS A+T (computed using SSTREMSS) average for the period from August to October 2017; (B) difference between 
SSS SMOS A+T (computed using SSTREMSS) and SSSSMOS A+T (computed using SSTREMSS MWO) average for the period from August to October 2017.  

Appendix H. MoD, STDD, r and N (number of collocations) between different versions of SMOS SSS or TOPAZ SSS and in-situ 
measurements for the different study areas. In SSS SMOS column, first line : ice filtered SMOS SSS , second line : SMOS BEC v2 (Olmedo 
et al., 2018) and third line : SMOS CEC v3 (Boutin et al., 2018).      

Cases study Statistic indicator SSSSMOS SSSSMOS A+T SSSTOPAZ  

Beaufort Sea MoD (pss) −2.12 
(1.04) 
(3.51) 

−0.83 3.67 

STDD (pss) 0.96 
(1.85) 
(2.35) 

0.88 1.18 

r 0.86 
(0.78) 
(0.76) 

0.88 0.86 

N (3912) 
(3976) 
(4434) 

3912 3912 

Chukchi Sea MoD (pss) −1.50 
(0.53) 
(3.00) 

−1.28 1.97 

STDD (pss) 1.47 
(1.48) 
(1.87) 

1.23 1.78 

r 0.84 
(0.83) 
(0.54) 

0.88 0.86 

N (90,721) 
(100908) 
(105986) 

90,721 90,721 
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Laptev Sea MoD (pss) −1.97 
(0.37) 
(0.59) 

0.11 1.51 

STDD (pss) 1.82 
(1.85) 
(2.35) 

1.17 1.89 

r 0.53 
(0.39) 
(−0.10) 

0.75 0.04 

N (4048) 
(3391) 
(3391) 

4048 4048 

Barents Sea MoD (pss) −1.59 
(−0.01) 
(0.35) 

−0.17 −0.19 

STDD (pss) 0.96 
(0.88) 
(1.39) 

0.94 0.50 

N (10,879) 
(15571) 
(18622) 

10,879 10,879 

r −0.03 
(0.31) 
(−0.14) 

−0.04 0.19 

Atlantic Area MoD (pss) −1.29 
(0.01) 
(0.01) 

−0.51 0.01 

STDD (pss) 1.02 
(0.27) 
(0.66) 

1.13 0.10 

r 0.01 
(0.38) 
(−0.05) 

−0.05 0.70 

N (2876) 
(5863) 
(6168) 

2876 2876 

Arctic Ocean MoD (pss) −1.54 
(0.12) 
(1.55) 

−0.27 1.25 

STDD (pss) 1.46 
(1.65) 
(2.30) 

1.28 1.86 

r 0.92 
(0.93) 
(0.86) 

0.94 0.89 

N (156986) 
(196665) 
(225904) 

156,986 156,986  
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