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Abstract: A method to retrieve soil moisture (SM) from Advanced Scanning Microwave
Radiometer—Earth Observing System Sensor (AMSR-E) observations using Soil Moisture and Ocean
Salinity (SMOS) Level 3 SM as a reference is discussed. The goal is to obtain longer time series of SM
with no significant bias and with a similar dynamical range to that of the SMOS SM dataset. This
method consists of training a neural network (NN) to obtain a global non-linear relationship linking
AMSR-E brightness temperatures (Tb) to the SMOS L3 SM dataset on the concurrent mission period
of 1.5 years. Then, the NN model is used to derive soil moisture from past AMSR-E observations.
It is shown that in spite of the different frequencies and sensing depths of AMSR-E and SMOS,
it is possible to find such a global relationship. The sensitivity of AMSR-E Tb’s to soil temperature
(Tsoil) was also evaluated using European Centre for Medium-Range Weather Forecast Interim/Land
re-analysis (ERA-Land) and Modern-Era Retrospective analysis for Research and Applications-Land
(MERRA-Land) model data. The best combination of AMSR-E Tb’s to retrieve Tsoil is H polarization
at 23 and 36 GHz plus V polarization at 36 GHz. Regarding SM, several combinations of input data
show a similar performance in retrieving SM. One NN that uses C and X bands and Tsoil information
was chosen to obtain SM in the 2003–2011 period. The new dataset shows a low bias (<0.02 m3/m3)
and low standard deviation of the difference (<0.04 m3/m3) with respect to SMOS L3 SM over most of
the globe’s surface. The new dataset was evaluated together with other AMSR-E SM datasets and the
Climate Change Initiative (CCI) SM dataset against the MERRA-Land and ERA-Land models for the
2003–2011 period. All datasets show a significant bias with respect to models for boreal regions and
high correlations over regions other than the tropical and boreal forest. All of the global SM datasets
including AMSR-E NN were also evaluated against a large number of in situ measurements over four
continents. Over Australia, all datasets show a strong level of agreement with in situ measurements.
Models perform better over Europe and mountainous regions in North America. Remote sensing
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datasets (in particular NN and the Land Parameter Retrieval Model (LPRM)) perform as well as
models for other North American sites and perform better than models over the Sahel region.

Keywords: soil moisture; passive radiometry; neural networks; SMOS (Soil Moisture and Ocean
Salinity) mission

1. Introduction

Understanding the Earth’s climate and how it is changing is one of the major challenges of the
twenty-first century. Climatic patterns can only be reliably detected in time series that are sufficiently
long (at least a few decades) because otherwise, natural short-scale variations can hide the longer
term trends. Therefore, to understand the climate evolution, a combination of long-term models and
observations is needed. Sustained observations from satellites can contribute significantly to this goal,
and this is the objective of observational programs, such as the European Spatial Agency (ESA) Climate
Change Initiative (CCI) [1]: to provide information on variables that were identified as “essential
climate variables” (ECVs) by the Global Climate Observing System (GCOS) in the context of the United
Nations Framework Convention on Climate Change (UNFCCC). This is also the goal of numerical
re-analyses, such as ERA-Interim [2], which use data assimilation techniques to merge observations
and models in an optimal way during long periods of time.

Soil moisture (SM) has been endorsed by the GCOS as an ECV [3], as it affects the water and
energy fluxes at the land surface/atmosphere interface [4,5]. Therefore, one of the ESA CCI projects,
launched in 2010, focuses on SM. As already mentioned, in order to use SM information for climate
modeling, SM datasets spanning long time periods are needed. The ESA SM CCI has developed
a strategy [6–9] that consists of merging a posteriori different SM datasets obtained with different
algorithms applied to data from different microwave active and passive sensors. The scaling of the
different datasets is done using as a reference a land surface model (such as GLDAS Noah) [6,7].

The Soil Moisture and Ocean Salinity (SMOS) satellite [10] was launched in November 2009,
and it is the first mission specifically designed to retrieve SM from space. Many studies have
evaluated the SMOS SM dataset in comparison to other remote sensing datasets, models and in
situ measurements [11–19]. SMOS shows very good global performance although other remote sensing
and model products can show better performances at some sites. In any case, datasets from the
only two instruments specifically conceived to measure SM, SMOS and Soil Moisture Active Passive
(SMAP), compare very well with each other [20,21].

Since the ESA SM CCI started shortly after the SMOS launch, SMOS is not included in the CCI.
However, it is important to investigate ways of including SMOS data in the long-term SM datasets
and of evaluating the new datasets. One of the advantages of SMOS is that it can observe at a lower
frequency (1.4 GHz) than previous instruments, and this frequency is less affected by the vegetation
cover [22]. A pertinent first step towards that goal is to study how to obtain a coherent dataset from
SMOS and the NASA/JAXA Advanced Scanning Microwave Radiometer (AMSR-E), which operated
from 2003–2011. Two approaches have been discussed in the literature: (i) adapting the Land Parameter
Retrieval Model (LPRM) algorithm to SMOS data [23]; (ii) using SMOS SM as a reference to compute
local linear regression equations linking AMSR-E Tb’s to SMOS SM and recomputing a SM dataset
from AMSR-E observations [24]. The present study is devoted to a third approach: using SMOS SM
as reference to find a global non-linear regression relationship linking AMSR-E Tb’s to SMOS SM
and recomputing an SM dataset from the AMSR-E observations. Preliminary results were presented
in [25–27].

Neural networks are a very efficient tool for computing global non-linear regressions. Recently,
the ESA has released a new SMOS SM near-real-time product computed with neural networks [28].
NNs have been used successfully to retrieve SM from AMSR-E observations over Mongolia, Australia
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and Italy [29,30]. NNs have also been used to test the a priori merging of active and passive
microwaves [31,32], including Advanced Scatterometer (ASCAT) and AMSR-E [33] or ASCAT and
SMOS [34]. In contrast, to our knowledge, this is the first time that NNs have been used to extend an
SM record in time using a global remote sensing dataset as a reference to train an algorithm to retrieve
SM from previous observations by another instrument. The NN training phase can be considered
as a consistency check of AMSR-E Tb’s and SMOS SM. It has been proposed that training an NN
with a land surface model could be an efficient approach to assimilate satellite data into that same
model [31,32]. However, if the goal is creating a generic long-term data record suitable for general data
assimilation applications, not using a land surface model to train the NN is a potential advantage as
one does not want to assimilate information from one model into another.

The rest of this paper is organized as follows. Section 2 describes the remote sensing and model
datasets used. Section 3 presents the in situ measurements used for the evaluation and the comparison
protocol. Section 4 discusses the training of the neural networks and the soil moisture retrieval. The new
SM dataset is evaluated in Section 5 in comparison to SMOS L3 SM (Section 5.1), other AMSR-E SM
datasets (Section 5.2), global models (Section 5.3) and in situ measurements (Section 5.4). Finally, the
conclusions are summarized in Section 6.

2. Datasets and Pre-Processing

2.1. SMOS Soil Moisture

SMOS [10,35] was launched on 2 November 2009 to measure the thermal emission from the Earth
in the 1.4-GHz protected frequency range in full-polarization and for incidence angles from 0◦–∼60◦.
The footprint (full width at half maximum of the synthesized beam) is ∼43 km on average [35].
The Equator overpass time is 6:00 a.m./p.m. for ascending/descending orbits.

The SMOS SM retrieval algorithm is based on the iterative minimization of the difference of
a forward model and the brightness temperatures (Tb’s) measured by SMOS [36]. The model uses the
τ −ω (optical depth-single scattering albedo) approach to take into account the effect of vegetation [37].
In the case of forest, two contributions to the opacity are taken into account: one from the arboreous
component, which is estimated from the maximum Leaf Area Index (LAI) [38], and another from
the understory vegetation. Soil temperature is obtained from ECMWF Integrated Forecast System
(IFS) data. For footprints with mixed land cover, the soil moisture content of the minor land cover
is estimated from ECMWF IFS, and its contribution to the Tb is fixed. For such cases, the SMOS SM
retrieval is only performed for the dominant land cover class within the footprint [36]. The Centre
Aval de Traitement de Données SMOS (CATDS) Level 3 daily product (SMOS L3 SM, [39]) Version 3.00
was used in this study. The Level 3 algorithm uses three orbits in a seven-day window to constrain the
optical depth as it is not physically expected to vary strongly in that time period [39]. CATDS products
are provided on an Equal-Area Scalable Earth grid version 2 (EASEv2) with typical node spacing of
25 km [40] as two files per day, one for ascending and another of descending half-orbits (there is no
temporal averaging in the L3 daily product).

2.2. AMSR-E Brightness Temperatures

The Advanced Microwave Scanning Radiometer for the Earth Observation System (AMSR-E)
is a six-frequency dual-polarized total-power passive microwave radiometer dedicated to observing
water-related geophysical parameters [41]. AMSR-E was launched in May 2002, on-board the Aqua
satellite, which follows a near-polar Sun-synchronous orbit of 98.8-min periods, crossing the Equator
at 1:30 p.m. local time for ascending orbits and at 1:30 a.m. for descending orbits. AMSR-E observed
the Earth until October 2011, in six frequency bands: 6.9 GHz (C-band), 10.7 GHz (X-band), 18.7 GHz,
23.8 GHz, 36.5 GHz and 89.0 GHz, at a constant incidence angle of 55◦. The footprint size depends on
the frequency; for instance, it is (cross-track × along-track) 43 × 75 km2 and 29 × 51 km2 at 6.9 and
10.7 GHz, respectively. The sampling interval on the Earth’s surface is 10.1 km along-track and
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9.0 km across-track. In this study, Level 2A brightness temperatures (L2A, Version 12) have been used.
The dataset was obtained from the National Snow and Ice Data Center.

2.3. AMSR-E LPRM Soil Moisture

The Land Parameter Retrieval Model (LPRM) is the baseline model for the soil moisture retrievals
from the passive microwave sensors within the ESA ECV CCI soil moisture dataset [42]. The SM
retrievals from LPRM have been extensively validated [12,43], and the model performance has been
documented in numerous publications [6,44]. LPRM demonstrated a good soil moisture retrieval skill
from AMSR-E observations over sparse to moderately-vegetated regions [15,45]. LPRM uses vertical
and horizontal polarized Tb’s as an input and uses a radiative transfer model to simultaneously solve
for SM and vegetation optical depth [6]. An advantage of LPRM is that it can be applied on different
frequency bands, including the X, C and L bands. The LPRM SM dataset used in this study was
obtained with an optimized single scattering albedo, a new roughness model and using both AMSR-E
and SMOS observations [23,46].

2.4. AMSR-E Reg Soil Moisture

The “AMSR-E Reg” SM dataset [24] has been obtained by computing local linear regressions
linking the surface reflectivity for vertical and horizontal polarization and SMOS L3 SM using a set
of three free parameters for each grid point. The local regression parameters were computed in
the June 2010–October 2011 period (when both AMSR-E and SMOS were in operation), getting as
many triplets of free parameters as land grid points with available AMSR-E Tb’s and SMOS L3 SM
data (∼1.5 × 105 points). In a second step, those parameters are used to estimate SM from AMSR-E
observations over the 2003–2010 period.

2.5. ESA Climate Change Initiative Soil Moisture

The European Space Agency Climate Change Initiative (CCI) has supported the generation of a
long-term SM product based on multiple microwave sensors in space, such as the radiometers (passive)
SMMR (Scanning Multichannel Microwave Radiometer), SSM/I (Special Sensor Microwave Imager),
Tropical Rainfall Measuring Mission’s (TRMM) Microwave Imager (TMI), WindSat Polarimetric
Radiometer, AMSR-E and AMSR-2 and the active sensors on board the European Remote Sensing
(ERS) satellites (Wind Scatterometer) and the Metop satellites (Advanced Scatterometer, ASCAT) [47].
Datasets derived from the different instruments are scaled into a common climatology by matching
their cumulative distribution functions (CDF) to those of AMSR-E for the passive datasets or ASCAT
for the active datasets. Since the different satellite products are provided in different units, they are
scaled into a common level using GLDAS-Noah model simulations. Finally, the active and passive
datasets are merged into a combined single dataset. Over areas with low vegetation, the passive one is
used, while over areas with moderate vegetation density, the active one is used. In transition areas,
if both passive and active data are available, the average is used, otherwise the only available data are
used for the final product. The CCI SM dataset used in this study is Version 2.2 (an evaluation against
in situ measurements can be found in [9]).

2.6. MERRA Land

The Modern-Era Retrospective analysis for Research and Applications-Land (MERRA-Land) [48]
is an atmospheric re-analysis that makes use of the Goddard Earth Observing System model Version 5
and the data assimilation system Version 5.2.0 with an updated precipitation forcing and catchment
land surface model compared to the normal MERRA dataset. It was developed by NASA and is
available from the beginning of 1980 to the present day. In the current study, the top 2-cm SM is used.
The data have a temporal resolution of one hour and a spatial resolution of 1/2◦ × 2/3◦.
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2.7. ECMWF ERA-Land Models

ECMWF model simulations of snow depth, soil temperature and soil moisture were used to
filter the data and to compare with remote sensing soil moisture measurements. The data used in
this study were extracted from a global Tiled ECMWF Scheme for Surface Exchanges over Land
(TESSEL) with improved hydrology [49] simulation of surface parameters from 1979–2014. The land
surface model has been forced with the atmosphere from the ERA-Interim re-analysis [2]. This dataset
will subsequently be referred to as ERA-Land and differs from the ERA-Interim/Land [50] only in
the precipitation forcing, which was not rescaled to match Global Precipitation Climatology Project
(GPCP) monthly means since GPCP Version 2.1 was not available after 2010. A more recent version of
GPCP could have been used, but it was decided to use the original ERA-Interim precipitations in this
study. It has a temporal sampling of 6 h and a spatial resolution of 79 km. Only the soil moisture and
temperature from the first layer of the model (0–7-cm depth) have been used in the current study.

2.8. Data Collocation and Filtering

The acquisition time difference between AMSR-E and SMOS could be significant for a dynamic
variable, such as SM. Therefore, only the night orbits (descending AMSR-E and ascending SMOS)
were used to avoid significant differences in the surface SM due to evaporation and convective
precipitation during daytime. Possible SM differences induced by precipitation taking place in
between AMSR-E and SMOS overpasses were not taken into account, but they will appear in a
limited number of points at the global level, and as shown by [32], this should not affect the training.
The CCI, MERRA-Land and ERA-Land datasets were spatially interpolated to the EASEv2 grid by
the area-overlap weighted average. The data have also been interpolated to the time of AMSR-E
acquisitions by linear interpolation. Several filters can be applied to the data:

1. Reference data uncertainty: An upper limit to the SMOS SM data uncertainty has been set for the
training phase (data were used when the Dqx parameter is lower than 0.06 m3/m3 and there is
less than 30% of forest in the footprint, the FFO parameter).

2. RFI in L-Band: SMOS SM data with a radio frequency interference (RFI) probability higher than
20% (RFI_Prob field) were filtered out.

3. RFI in C or X bands: AMSR-E brightness temperature difference from C-band to X-band for both
for H and V polarizations (TH,V

di f f = TH,V
C − TH,V

X ) should be in the range −10 K ≤ TH,V
di f f ≤ 5 K.

Otherwise, the data are probably affected by RFI from artificial sources as discussed by [51].
Some geophysical phenomena could be identified by this criterion as RFI, for instance when the
scattering is important over snow/ice or dry sand surfaces [52]. However, the effect is small,
and a number of studies [6,46] have used the criterion by [51]. In addition, in the current study,
snow/ice was filtered out before retrieving SM.

4. Frozen soil and snow: The soil temperature from the ERA-Land model should be higher than
274 K to avoid frozen soil (taking into account a temperature uncertainty of ∼ 1 K). The snow
depth from ERA-Land should be lower than 1 mm.

All filters from 1–4 have been applied to obtain a clean training subset (Section 4.1). This subset
contains ∼ 4.5×106 samples, which allows one to study statistical retrieval techniques. For the AMSR-E
NN retrieval and evaluation (Sections 5.2–5.4), only Filters 3 and 4 have been applied, except for the
comparison to SMOS L3 in the common period (June 2010–October 2011; Section 5.1), for which Filter
2 was also applied.

3. In Situ Measurements and Evaluation Protocol

The AMSR-E NN SM dataset discussed in this paper, along with those presented above,
was evaluated against in situ measurements for a large number of sites. All of the in situ data
were obtained from the International Soil Moisture Network [53] except for the Danish Hydrological
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Observatory (HOBE) and the African Monsoon Multidisciplinary Analysis (AMMA), which have been
directly provided by the teams managing the experimental sites. As the C-band radiation detected
from space comes from the first few centimeters of the soil, only SM measurements at the 2-, 5- and
8-cm depth range were used. The sites are located in four continents and cover a large spectrum of
climate conditions. Table 1 shows a summary of the networks used, and Figure 1 shows their position.
The different networks were classified in two main types:

1. Sparse networks: networks with a single site or a larger number of sites located at a distance
larger than the AMSR-E footprint. Therefore, one single in situ measurement is compared to the
corresponding remote sensing measurement.

2. Dense networks: networks with more than one sensor (Table 1) in a region of several hundred
square kilometers (238 km2 in Reynolds Creek or 610 km2 in Little Washita, for instance). Since this
surface is smaller than an AMSR-E footprint (∼1500 km2 at the X-band), measurements from
individual sensors of the same network can be averaged to have a soil moisture value more
representative of the spatial scale of the remote sensing measurement.

Table 1. In situ networks used in this study. The depths are quoted as two numbers: the first one
is the upper depth, and the second one is the lower depth of the sensor. Both numbers are equal
when the sensor is placed horizontally. The third column gives the number of sensors remaining for
each network after applying all of the criteria used for the evaluation that are discussed in Section 3.
The third column gives the average number of points in the times series for each network that satisfies
the evaluation criteria.

Network Depth (cm) Sites Points Location

Sparse Networks

ARM 0.05–0.05 38 687 USA
CARBOAFRICA 0.05–0.05 1 522 Sudan
DAHRA 0.05–0.05 1 492 Senegal
OZNET 0.00–0.05 23 630 Australia
OZNET 0.00–0.08 16 1168 Australia
REMEDHUS 0.00–0.05 25 988 Spain
MOL-RAO 0.08–0.08 1 1323 Germany
SMOSMANIA 0.05–0.05 14 576 France
SWEX-POLAND 0.05–0.05 3 380 Poland
UDC-SMOS 0.05–0.05 21 348 Germany
SCAN 0.05–0.05 88 588 USA
SNOTEL 0.05–0.05 147 459 USA

Dense Networks

ARS Little River 0.00–0.05 29 817 USA
ARS Little Washita 0.00–0.05 20 483 USA
ARS Reynolds Creek 0.00–0.05 19 954 USA
HOBE 0.00–0.05 32 204 Denmark
AMMA Benin 0.05–0.05 9 381 Benin
AMMA Niger 0.05–0.05 5 380 Niger
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Figure 1. Locations of the in situ sensors.

3.1. North America

The SCAN (Soil Climate Analysis Network) network contains over 100 sensors/sites [54] and
has been widely used to evaluate modeled and remote sensing soil moisture datasets. The sensors
are located in agricultural regions with a relatively homogeneous landscape in many cases. The ARM
(Atmospheric Radiation Measurement) network is run by the U.S. Department of Energy as part of
the Atmospheric Radiation Measurement Climate Research Facility. SNOTEL (SNOw TELemetry)
is a network [55] with a large number of stations (420) located mainly in mountainous areas. These
networks are sparse networks that contain a large number of sites located at hundreds of kilometers
from each other to sample soil moisture conditions at the continental scale. In addition, the United
States Department of Agriculture (USDA) Agricultural Research Service (ARS) operates several dense
networks. Three of these networks were used in the current study: Little River (LR) in Georgia, Little
Washita (LW) in Oklahoma and Reynolds Creek (RC) in Idaho. These three watersheds cover a variety
of soil types, crop types and climates. LR is the most humid site with an annual precipitation amount
of 1200 mm, mostly covered by row crops and forests. With a sub-humid climate, the LW watershed
is mostly used for agricultural activities with wheat crops and grass covers. Finally, RC is located in
a mountainous area. Its climate is classified as semiarid, but frozen soils are very frequent in winter.
These dense networks have already been used to evaluate AMSR-E and SMOS retrievals [56,57].

3.2. Europe

The Danish Hydrological OBsErvatory (HOBE) network [14,58] is situated in the Skjern River
Catchment, and it is a dense network with 30 stations distributed to sample the different soil and
environmental conditions on a scale of tenths of kilometers, comparable to the AMSR-E or SMOS
footprints. Nearly 80% of this region is under intensive cultivation, intermixed with patches of spruce
forest (∼10%), as well as heath/grassland (∼6%). The measurements of the different sensors are
averaged before comparing to remote sensing or model SM datasets.

The Red de Estaciones de MEDición de la Humedad def Suelo (REMEDHUS) network [59]
is located in a central sector of the Duero basin in Spain. The climate is semiarid continental
Mediterranean, and the area is mainly flat covered by agricultural fields with some patchy forest. The
sensors are installed horizontally at a depth of 5 cm.

The Lindenberg Meteorological Observatory-Richard Assmann Observatory (MOL-RAO) [60]
site is situated close to Berlin, Germany. The Falkenberg site land cover is grassland. In this study, the
horizontal probe at a depth of 8 cm has been selected.

Soil Moisture Observing System–Meteorological Automatic Network Integrated Application
(SMOSMANIA) [61] is a network of Météo-France. The locations of the stations were chosen to form
an Atlantic to Mediterranean transect, north of the Pyrenees mountain range, with the aim of sampling
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the marked climatic gradient. In this study, the data measured by the probes at a 5-cm depth have
been selected.

The Soil Water and Energy Exchange Poland (SWEX Poland) network [62] has been set up in
particular to support calibration and validation of SMOS products over wetlands. In the current study,
the probes placed horizontally at a 5-cm depth have been selected.

The Upper Danube catchment (UDC) SMOS network is located in southern Germany [ 63].
The sensors measuring soil moisture at the 5-cm depth layer have been used in the current study.

3.3. Africa

The AMMA-CATCH (African Monsoon Multidisciplinary Analysis - Coupling the Tropical
Atmosphere and the Hydrological Cycle) observatory [ 64] sites in Niger and Benin have been used in
this study. The Niger site (with �ve stations) is mainly tiger bush on the plateaus and fallow savannah
and pearl millet crop �elds on the sandy slopes (typical Sahelian rain-fed cultivated area). The annual
rainfall amount ranges from 300–600 mm. The Benin site is located 400 km south of the Niger site,
in a Soudanian climate. The observed annual rainfall is about 1200 mm. The vegetation is woody
savannah and tropical forest. These two sites are processed as dense networks, and the soil moisture
values have been averaged (�ve and nine stations for the Niger and Benin sites, respectively) before
comparing to remote sensing and model data.

The Danish Natural Science Research Council �eld site near Dahra in Senegal, West Africa,
(hereafter DAHRA, [ 65]), was established in 2002 to monitor the ecosystem properties of semiarid
savannah grassland and their responses to climatic and environmental change. The site experiences a
typical Sahelian climate (annual rainfall ranges from 200–600 mm), and land cover is typically Sahelian
with grass species and coexisting trees (3% canopy cover). The sensors sampling horizontally at a 5-cm
depth were used in this study.

The CARBOAFRICA (full project name: Quanti�cation, understanding and prediction of carbon
cycle, and other greenhouse gases, in Sub-Saharan Africa) [66] site is located in central Sudan and has
collected meteorological and soil data from 2002–2012. The site is a sparse savannah in a semiarid
region. The soil moisture measured by one sensor placed horizontally at a 5-cm depth is used in the
current study.

3.4. Australia

Two subsets of the southeast Australia hydrological network (OzNet) have been used in this
study. The Murrumbidgee Soil Moisture Monitoring Network (MSMMN) is located in southern New
South Wales, Australia [67]. The Murrumbidgee Catchment shows a climate ranging from semiarid
to humid. Land use includes dry land and irrigated agriculture, remnant native vegetation and
urban areas. Here, the “sparse network” composed by the 18 initial stations providing soil moisture
measurements integrated over the 0–8-cm soil layer has been selected because it has provided data
since 2001 (hereafter, OzNet 0.00–0.08).

In addition, data from the smaller Yanco, Kyeamba and Adelong Creek catchments, which are
located within the Murrumbidgee Catchment, have also been used [ 68]. The data started in 2006,
but these second generation sites are equipped with 0–5-cm depth probes. Data from these sites have
been processed as a single sparse network (hereafter, OzNet 0.00–0.05).

3.5. Local Evaluation Strategy

The AMSR-E NN SM (Section 4) and the other SM datasets (Section 2) have been evaluated
against in situ measurements at the sites discussed above. RFI, snow and frozen soil �lters (3 and 4
in Section 2.8) have been applied to the data. The in situ measurements have been compared to the
closest point of the EASEv2 grid. To select a given in situ measurement, a time window of � 30 min
around the time of AMSR-E acquisitions has been applied. Data from a given time are used to compute
statistics metrics only if an SM value is available for all of the datasets, ensuring that all time series
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